Prognostic signature composed of transcription factors accurately predicts the prognosis of gastric cancer patients

Author:

Zhou Liqiang,Chen Zhiqing,Wu You,Lu Hao,Xin LinORCID

Abstract

Abstract Background Transcription factors (TFs) are involved in important molecular biological processes of tumor cells and play an essential role in the occurrence and development of gastric cancer (GC). Methods Combined The Cancer Genome Atlas Program and Genotype-Tissue Expression database to extract the expression of TFs in GC, analyzed the differences, and weighted gene co-expression network analysis to extract TFs related to GC. The cohort including the training and validation cohort. Univariate Cox, least absolute contraction and selection operator (LASSO) regression, and multivariate Cox analysis was used for screening hub TFs to construct the prognostic signature in the training cohort. The Kaplan–Meier (K–M) and the receiver operating characteristic curve (ROC) was drawn to evaluate the predictive ability of the prognostic signature. A nomogram combining clinical information and prognostic signatures of TFs was constructed and its prediction accuracy was evaluated through various methods. The target genes of the hub TFs was predicted and enrichment analysis was performed to understand its molecular biological mechanism. Clinical samples and public data of GC was collected to verify its expression and prognosis. 5-Ethynyl-2′-deoxyuridine and Acridine Orange/Ethidium Bromide staining, flow cytometry and Western-Blot detection were used to analyze the effects of hub-TF ELK3 on the proliferation and apoptosis of gastric cancer in vitro. Results A total of 511 misaligned TFs were obtained and 200 GC-related TFs were exposed from them. After systematic analysis, a prognostic signature composed of 4 TFs (ZNF300, ELK3, SP6, MEF2B) were constructed. The KM and ROC curves demonstrated the good predictive ability in training, verification, and complete cohort. The areas under the ROC curve are respectively 0.737, 0.705, 0.700. The calibration chart verified that the predictive ability of the nomogram constructed by combining the prognostic signature of TFs and clinical information was accurate, with a C-index of 0.714. Enriching the target genes of hub TFs showed that it plays an vital role in tumor progression, and its expression and prognostic verification were consistent with the previous analysis. Among them, ELK3 was proved in vitro, and downregulation of its expression inhibited the proliferation of gastric cancer cells, induced proliferation, and exerted anti-tumor effects. Conclusions The 4-TFs prognostic signature accurately predicted the overall survival of GC, and ELK3 may be potential therapeutic targets for GC

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Education Department of Jiangxi Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3