Long non-coding RNA MALAT1 regulates oxaliplatin-resistance via miR-324-3p/ADAM17 axis in colorectal cancer cells

Author:

Fan Changru,Yuan Qiulan,Liu Guifeng,Zhang Yuliang,Yan Maojun,Sun Qingxu,Zhu ChaoyuORCID

Abstract

Abstract Background Colorectal cancer (CRC) is one of the most general malignant tumors. Accumulating evidence implied that long non-coding RNA Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) participated in the tumorigenesis of CRC. However, the effect of MALAT1 in drug-resistance needed to be further illustrated. Methods Levels of MALAT1, microRNA (miR)-324-3p, and a disintegrin and metalloprotease metallopeptidase domain 17 (ADAM17) were detected using quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay. Cell Counting Kit 8 (CCK-8) was used to assess the half maximal inhibitory concentration (IC50) of oxaliplatin (Ox). Meanwhile, cell proliferation, migration and apoptosis were detected by CCK-8, transwell assay, and flow cytometry, respectively. The interaction between miR-324-3p and MALAT1 or ADAM17 was clarified by dual-luciferase reporter assay. Also, the effect of MALAT1 on tumor growth was detected in xenograft tumor mice treated with Ox. Results Significant up regulation of MALAT1 and ADAM17, and decrease of miR-324-3p were observed in Ox-resistant CRC tissues and cells. MALAT1 deficiency enhanced the sensitivity of Ox-resistant CRC cells response to Ox, while miR-324-3p repression or ADAM17 acceleration could overturn this effect. Moreover, MALAT1 silencing repressed tumor growth in Ox-treated nude mice. Mechanically, MALAT1 exerted promotion effect on the resistance response to Ox via miR-324-3p/ADAM17 axis in Ox-resistant CRC cells. Conclusion MALAT1 modulated the sensitivity of Ox through ADAM17 in Ox-resistant CRC cells by sponging miR-324-3p, thus MALAT1 might serve as a novel insight for the therapy of CRC.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3