The function and mechanism of PSMD14 in promoting progression and resistance to anlotinib in osteosarcoma

Author:

Liu Zhiyong,Wang Xin,Li Chao,Zhao Ruina

Abstract

Abstract Background Osteosarcoma is a rare bone malignancy that frequently affects adolescents and poses formidable obstacles in its advanced stages. Studies revealed that PSMD14 may be a viable osteosarcoma treatment target. However, PSMD14’s function and mechanism in osteosarcoma remain unknown. This study aimed to examine the function and mechanism of PSMD14 in the biological behavior of osteosarcoma and its role in anlotinib resistance. Methods Western blotting, qRT-PCR, and immunohistochemistry (IHC) studies were used to examine PSMD14 levels. The role of PSMD14 in the malignant phenotype of osteosarcoma and its molecular pathway was explored by a series of studies, including Western blotting, cell amplification assay, transwell assay, and tumor growth. Furthermore, a series of in vitro investigations were done to determine the effect of PSMD14 on anlotinib-resistant osteosarcoma cell lines. Results PSMD14 expression was elevated in osteosarcoma tissues compared to normal tissues. Overexpression of PSMD14 was associated with osteosarcoma patients’ pathological grade and clinical stage, and PSMD14 was an independent poor prognostic factor. PSMD14 knockdown inhibits in vitro cell proliferation, migration, invasion, and in vivo tumor growth. PSMD14 knockdown has the potential to downregulate the PI3K/Akt/mTOR pathway, which was regarded as one of the key mechanisms promoting tumor growth. PSMD14 was likewise overexpressed in anlotinib-resistant OS cell lines, and its knockdown not only reduced the proliferation, migration, and invasion of subline cells and triggered cell apoptosis. Importantly, combination therapy with anlotinib enhanced these effects. Conclusions PSMD14 is substantially expressed in osteosarcoma and may be an independent risk factor associated with poor prognosis. It can promote tumor progression and anlotinib resistance in osteosarcoma and may promote osteosarcoma progression by modulating PI3K/AKT/mTOR signaling pathway.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3