Identification of differential proteomics in Epstein-Barr virus-associated gastric cancer and related functional analysis

Author:

Wang Zeyang,Lv Zhi,Xu Qian,Sun Liping,Yuan YuanORCID

Abstract

Abstract Background Epstein-Barr virus-associated gastric cancer (EBVaGC) is the most common EBV-related malignancy. A comprehensive research for the protein expression patterns in EBVaGC established by high-throughput assay remains lacking. In the present study, the protein profile in EBVaGC tissue was explored and related functional analysis was performed. Methods Epstein-Barr virus-encoded RNA (EBER) in situ hybridization (ISH) was applied to EBV detection in GC cases. Data-independent acquisition (DIA) mass spectrometry (MS) was performed for proteomics assay of EBVaGC. Functional analysis of identified proteins was conducted with bioinformatics methods. Immunohistochemistry (IHC) staining was employed to detect protein expression in tissue. Results The proteomics study for EBVaGC was conducted with 7 pairs of GC cases. A total of 137 differentially expressed proteins in EBV-positive GC group were identified compared with EBV-negative GC group. A PPI network was constructed for all of them, and several proteins with relatively high interaction degrees could be the hub genes in EBVaGC. Gene enrichment analysis showed they might be involved in the biological pathways related to energy and biochemical metabolism. Combined with GEO datasets, a highly associated protein (GBP5) with EBVaGC was screened out and validated with IHC staining. Further analyses demonstrated that GBP5 protein might be associated with clinicopathological parameters and EBV infection in GC. Conclusions The newly identified proteins with significant differences and potential central roles could be applied as diagnostic markers of EBVaGC. Our study would provide research clues for EBVaGC pathogenesis as well as novel targets for the molecular-targeted therapy of EBVaGC.

Funder

the National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3