Hsa_circRNA_102051 regulates colorectal cancer proliferation and metastasis by mediating Notch pathway

Author:

Chen Zhongsheng,Cheng Haiyu,Zhang Jiandong,Jiang Dongbing,Chen Gang,Yan Shunkang,Chen Wen,Zhan Wei

Abstract

Abstract Background The purpose of this study was to investigate the role of hsa_circRNA_102051 in colorectal cancer (CRC) and its effect on the stemness of tumor cells. Methods CircRNA microarray was under analysis to screen differentially expressed novel circRNAs in the pathology of CRC. Quantitative real-time PCR was used to detect the relative RNA expression in CRC cells and samples. The effects of hsa_circRNA_102051 on biological functions in CRC cells were accessed both in vitro and in vivo. FISH, RIP and luciferase reporter assay were conducted to confirm the regulatory correlations between hsa_circRNA_102051 and miR-203a, as well as miR-203a and BPTF. Xenograft models were applied to further verify the impacts and fluctuations of hsa_circRNA_102051/miR-203a/BPTF. Moreover, the mechanism how hsa_circRNA_102051 affected the Notch signals was also elucidated. Results Hsa_circRNA_102051 was up-regulated in CRC tissues and cell lines, capable to promote the growth and invasion of CRC. In addition, hsa_circRNA_102051 could enhance stemness of CRC cells. BPTF was identified as downstream factors of hsa_circRNA_102051, and miR-203a was determined directly targeting both hsa_circRNA_102051 and BPTF as an intermediate regulator. Hsa_circRNA_102051 in CRC could block miR-203a expression, and subsequently activated BPTF. Hsa_circRNA_102051/miR-203a/BPTF axis modulated stemness of CRC cells by affecting Notch pathway. Conclusions Our findings provided new clues that hsa_circRNA_102051 might be a potential predictive or prognostic factor in CRC, which induced the fluctuation of downstream miR-203a/BPTF, and subsequently influenced tumor growth, activities and stemness. Thereinto, the Notch signals were also involved. Hence, the hsa_circRNA_102051/miR-203a/BPTF axis could be further explored as a therapeutic target for anti-metastatic therapy in CRC patients.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3