Comprehensive analyses reveal the carcinogenic and immunological roles of ANLN in human cancers

Author:

Shi Yanlong,Ma Xinyu,Wang Menglu,Lan Sheng,Jian Haokun,Wang Yue,Wei Qian,Zhong Fei

Abstract

Abstract Background Anillin (ANLN) is an actin-binding protein that is essential for cell division and contributes to cell growth and migration. Although previous studies have shown that ANLN is related to carcinogenesis, no pan-cancer analyses of ANLN have been reported. Accordingly, in this study, we evaluated the carcinogenic roles of ANLN in various cancer types using online databases. Methods We evaluated the potential carcinogenic roles of ANLN using TIMER2 and Gene Expression Omnibus databases with 33 types of cancers. We further investigated the associations of ANLN with patient prognosis, genetic alterations, phosphorylation levels, and immune infiltration in multiple cancers using GEPIA2, cBioPortal, UACLAN, and TIMER2 databases. Additionally, the potential functions of ANLN were explored using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Reverse transcription quantitative polymerase chain reaction and immunohistochemistry were used to determine ANLN mRNA and protein expression in colorectal cancer (CRC), gastric cancer (GC), and hepatocellular carcinoma (HCC) cell lines. Results ANLN was overexpressed in various tumor tissues compared with corresponding normal tissues, and significant correlations between ANLN expression and patient prognosis, genetic alterations, phosphorylation levels, and immune infiltration were noted. Moreover, enrichment analysis suggested that ANLN functionally affected endocytosis, regulation of actin cytoskeleton, and oxytocin signaling pathways. Importantly, ANLN mRNA and protein expression levels were upregulated in gastrointestinal cancers, including CRC, GC, and HCC. Conclusions Our findings suggested that ANLN participated in tumorigenesis and cancer progression and may have applications as a promising biomarker of immune infiltration and prognosis in various cancers.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3