Identification of methylation-driven genes prognosis signature and immune microenvironment in uterus corpus endometrial cancer

Author:

Liu JinHui,Ji ChengJian,Wang Yichun,Zhang Cheng,Zhu HongJunORCID

Abstract

Abstract Background Uterus corpus endometrial cancer (UCEC) is the main malignant tumor in gynecology, with a high degree of heterogeneity, especially in terms of prognosis and immunotherapy efficacy. DNA methylation is one of the most important epigenetic modifications. Studying DNA methylation can help predict the prognosis of cancer patients and provide help for clinical treatment. Our research aims to discover whether abnormal DNA methylation can predict the prognosis of UCEC and reflect the patient's tumor immune microenvironment. Patients and methods The clinical data, DNA methylation data, gene expression data and somatic mutation data of UCEC patients were all downloaded from the TCGA database. The MethylMix algorithm was used to integrate DNA methylation data and mRNA expression data. Univariate Cox regression analysis, Multivariate Cox regression analysis, and Lasso Cox regression analysis were used to determine prognostic DNA methylation-driven genes and to construct an independent prognostic index (MDS). ROC curve analysis and Kaplan–Meier survival curve analysis were used to evaluate the predictive ability of MDS. GSEA analysis was used to explore possible mechanisms that contribute to the heterogeneity of the prognosis of UCEC patients. Results 3 differential methylation-driven genes (DMDGs) (PARVG, SYNE4 and CDO1) were considered as predictors of poor prognosis in UCEC. An independent prognostic index was finally established based on 3 DMDGs. From the results of ROC curve analysis and survival curve analysis, MDS showed excellent prognostic ability in TCGA-UCEC. A new nomogram based on MDS and other prognostic clinical indicators has also been successfully established. The C-index of the nomogram for OS prediction was 0.764 (95% CI = 0.702–0.826). GSEA analysis suggests that there were differences in immune-related pathways among patients with different prognosis. The abundance of M2 macrophages and M0 macrophages were significantly enhanced in the high-risk group while T cells CD8, Eosinophils and Neutrophils were markedly elevated in the low-risk group. Meanwhile, patients in the low-risk group had higher levels of immunosuppressant expression, higher tumor mutational burden and immunophenoscore (IPS) scores. Joint survival analysis revealed that 7 methylation-driven genes could be independent prognostic factors for overall survival for UCEC. Conclusion We have successfully established a risk model based on 3 DMDGs, which could accurately predict the prognosis of patients with UCEC and reflect the tumor immune microenvironment.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3