Protein arginine deiminase 2 (PAD2) modulates the polarization of THP-1 macrophages to the anti-inflammatory M2 phenotype

Author:

Stachowicz Aneta,Pandey Rakhi,Sundararaman Niveda,Venkatraman Vidya,Van Eyk Jennifer E.,Fert-Bober Justyna

Abstract

Abstract Background Macrophages are effector cells of the innate immune system that undergo phenotypical changes in response to organ injury and repair. These cells are most often classified as proinflammatory M1 and anti-inflammatory M2 macrophages. Protein arginine deiminase (PAD), which catalyses the irreversible conversion of protein-bound arginine into citrulline, is expressed in macrophages. However, the substrates of PAD and its role in immune cells remain unclear. This study aimed to investigate the role of PAD in THP-1 macrophage polarization to the M1 and M2 phenotypes and identify the citrullinated proteins and modified arginines that are associated with this biological switch using mass spectrometry. Results Our study showed that PAD2 and, to a lesser extent, PAD1 and PAD4 were predominantly expressed in M1 macrophages. We showed that inhibiting PAD expression with BB-Cl-amidine decreased macrophage polarization to the M1 phenotype (TNF-α, IL-6) and increased macrophage polarization to the M2 phenotype (MRC1, ALOX15). This process was mediated by the downregulation of proteins involved in the NF-κβ pathway. Silencing PAD2 confirmed the activation of M2 macrophages by increasing the antiviral innate immune response and interferon signalling. A total of 192 novel citrullination sites associated with inflammation, cell death and DNA/RNA processing pathways were identified in M1 and M2 macrophages. Conclusions We showed that inhibiting PAD activity using a pharmacological inhibitor or silencing PAD2 with PAD2 siRNA shifted the activation of macrophages towards the M2 phenotype, which can be crucial for designing novel macrophage-mediated therapeutic strategies. We revealed a major citrullinated proteome and its rearrangement following macrophage polarization, which after further validation could lead to significant clinical benefits for the treatment of inflammation and autoimmune diseases.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Clinical Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3