Attack detection in water distribution systems using machine learning

Author:

Ramotsoela Daniel T.,Hancke Gerhard P.,Abu-Mahfouz Adnan M.

Abstract

Abstract The threat to critical water system infrastructure has increased in recent years as is evident from the increasing number of reported attacks against these systems. Preventative security mechanisms are often not enough to keep attackers out so a second layer of security in the form of intrusion detection is paramount in order to limit the damage of successful attacks. In this paper several traditional anomaly detection techniques are evaluated in the context of attack detection in water distribution systems. These algorithms were centrally trained on the entire feature space and compared to multi-stage detection techniques that were designed to isolate both local and global anomalies. A novel ensemble technique that combines density-based and parametric algorithms was also developed and tested in the application environment. The traditional techniques had comparable results to the multi-stage systems and when used in conjunction with a local anomaly detector the performances of these algorithms were greatly improved. The developed ensemble technique also had promising results outperforming the density-based techniques and having comparable results to the parametric algorithms.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3