Energy recovery from syngas and pyrolysis wastewaters with anaerobic mixed cultures

Author:

Robazza Alberto,Neumann AnkeORCID

Abstract

AbstractThe anaerobic digestion of aqueous condensate from fast pyrolysis is a promising technology for enhancing carbon and energy recovery from waste. Syngas, another pyrolysis product, could be integrated as a co-substrate to improve process efficiency. However, limited knowledge exists on the co-fermentation of pyrolysis syngas and aqueous condensate by anaerobic cultures and the effects of substrate toxicity. This work investigates the ability of mesophilic and thermophilic anaerobic mixed cultures to co-ferment syngas and the aqueous condensate from either sewage sludge or polyethylene plastics pyrolysis in semi-batch bottle fermentations. It identifies inhibitory concentrations for carboxydotrophic and methanogenic reactions, examines specific component removal and assesses energy recovery potential. The results show successful co-fermentation of syngas and aqueous condensate components like phenols and N-heterocycles. However, the characteristics and load of the aqueous condensates affected process performance and product formation. The toxicity, likely resulting from the synergistic effect of multiple toxicants, depended on the PACs’ composition. At 37 °C, concentrations of 15.6 gCOD/gVSS and 7.8 gCOD/gVSS of sewage sludge-derived aqueous condensate inhibited by 50% carboxydotrophic and methanogenic activity, respectively. At 55 °C, loads between 3.9 and 6.8 gCOD/gVSS inhibited by 50% both reactions. Polyethylene plastics condensate showed higher toxicity, with 2.8 gCOD/gVSS and 0.3 gCOD/gVSS at 37 °C decreasing carboxydotrophic and methanogenic rates by 50%. At 55 °C, 0.3 gCOD/gVSS inhibited by 50% CO uptake rates and methanogenesis. Increasing PAC loads reduced methane production and promoted short-chain carboxylates formation. The recalcitrant components in sewage sludge condensate hindered e-mol recovery, while plastics condensate showed high e-mol recoveries despite the stronger toxicity. Even with challenges posed by substrate toxicity and composition variations, the successful conversion of syngas and aqueous condensates highlights the potential of this technology in advancing carbon and energy recovery from anthropogenic waste streams. Graphical Abstract

Funder

Materials and Technologies for the Energy Transition (MTET), Topic 3: Chemical Energy Carriers

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3