Abstract
AbstractFor the production of biofuel (bioethanol), enzymatic adsorption onto a lignocellulosic biomass surface is a prior condition for the enzymatic hydrolysis process to occur. Lignocellulosic substances are mainly composed of cellulose, hemicellulose and lignin. The polysaccharide matrix (cellulose and hemicellulose) is capable of producing bioethanol. Therefore, lignin is removed or its concentration is reduced from the adsorption substrates by pretreatments. Selected enzymes are used for the production of reducing sugars from cellulosic materials, which in turn are converted to bioethanol. Adsorption of enzymes onto the substrate surface is a complicated process. A large number of research have been performed on the adsorption process, but little has been done to understand the mechanism of adsorption process. This article reviews the mechanisms of adsorption of enzymes onto the biomass surfaces. A conceptual adsorption mechanism is presented which will fill the gaps in literature and help researchers and industry to use adsorption more efficiently. The process of enzymatic adsorption starts with the reciprocal interplay of enzymes and substrates and ends with the establishment of molecular and cellular binding. The kinetics of an enzymatic reaction is almost the same as that of a characteristic chemical catalytic reaction. The influencing factors discussed in detail are: surface characteristics of the participating materials, the environmental factors, such as the associated flow conditions, temperature, concentration, etc. Pretreatment of lignocellulosic materials and optimum range of shear force and temperature for getting better results of adsorption are recommended.
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献