Author:
Ruan Zuoxi,Lu Meifang,Lin Hongmin,Chen Shanwen,Li Ping,Chen Weizhou,Xu Huijuan,Qiu Dajun
Abstract
Abstract
Solar radiation varies quantitatively and qualitatively while penetrating through the seawater column and thus is one of the most important environmental factors shaping the vertical distribution pattern of phytoplankton. The haploid and diploid life-cycle phases of coccolithophores might have different vertical distribution preferences. Therefore, the two phases respond differently to high solar photosynthetically active radiation (PAR, 400–700 nm) and ultraviolet radiation (UVR, 280–400 nm). To test this, the haploid and diploid Emiliania huxleyi were exposed to oversaturating irradiance. In the presence of PAR alone, the effective quantum yield was reduced by 10% more due to the higher damage rate of photosystem II in haploid cells than in diploid cells. The addition of UVR resulted in further inhibition of the quantum yield for both haploid and diploid cells in the first 25 min, partly because of the increased damage of photosystem II. Intriguingly, this UVR-induced inhibition of the haploid cells completely recovered half an hour later. This recovery was confirmed by the comparable maximum quantum yields, maximum relative electron transport rates and yields of the haploid cells treated with PAR and PAR + UVR. Our data indicated that photosynthesis of the haploid phase was more sensitive to high visible light than the diploid phase but resistant to UVR-induced inhibition, reflecting the ecological niches to which this species adapts.
Graphical Abstract
Funder
National Natural Science Foundation of China
National Key Research and Development Program
Natural Science Foundation of Guangdong Province
Department of Science and Technology of Guangdong Province
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献