High driving pressure ventilation induces pulmonary hypertension in a rabbit model of acute lung injury

Author:

Xu Yonghao,Zhang Yu,Zhang Jie,Liang Weibo,Wang Ya,Zeng Zitao,Liang Zhenting,Ling Zhaoyi,Chen Yubiao,Deng Xiumei,Huang Yongbo,Liu Xiaoqing,Zhang Haibo,Li Yimin

Abstract

Abstract Background Mechanical ventilation may cause pulmonary hypertension in patients with acute lung injury (ALI), but the underlying mechanism remains elucidated. Methods ALI was induced in rabbits by a two-hit injury, i.e., hydrochloric acid aspiration followed by mechanical ventilation for 1 h. Rabbits were then ventilated with driving pressure of 10, 15, 20, or 25 cmH2O for 7 h. Clinicopathological parameters were measured at baseline and different timepoints of ventilation. RNA sequencing was conducted to identify the differentially expressed genes in high driving pressure ventilated lung tissue. Results The two-hit injury induced ALI in rabbits was evidenced by dramatically decreased PaO2/FiO2 in the ALI group compared with that in the control group (144.5 ± 23.8 mmHg vs. 391.6 ± 26.6 mmHg, P < 0.001). High driving pressure ventilation (20 and 25 cmH2O) significantly elevated the parameters of acute pulmonary hypertension at different timepoints compared with low driving pressure (10 and 15 cmH2O), along with significant increases in lung wet/dry ratios, total protein contents in bronchoalveolar lavage fluid, and lung injury scores. The high driving pressure groups showed more pronounced histopathological abnormalities in the lung compared with the low driving pressure groups, accompanied by significant increases in the cross-sectional areas of myocytes, right ventricular weight/body weight value, and Fulton’s index. Furthermore, the expression of the genes related to ferroptosis induction was generally upregulated in high driving pressure groups compared with those in low driving pressure groups. Conclusions A rabbit model of ventilation-induced pulmonary hypertension in ALI was successfully established. Our results open a new research direction investigating the exact role of ferroptosis in ventilation-induced pulmonary hypertension in ALI.

Funder

National Natural Science Foundation of China

Zhongnanshan Medical Foundation of Guangdong Province

Clinical independent exploration project of Guangzhou institute of Respiratory and Health

Discipline construction Project of Guangzhou Medical University

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3