A deep learning model for predicting multidrug-resistant organism infection in critically ill patients

Author:

Wang Yaxi,Wang Gang,Zhao Yuxiao,Wang Cheng,Chen Chen,Ding Yaoyao,Lin Jing,You Jingjing,Gao Silong,Pang XufengORCID

Abstract

Abstract Background This study aimed to apply the backpropagation neural network (BPNN) to develop a model for predicting multidrug-resistant organism (MDRO) infection in critically ill patients. Methods This study collected patient information admitted to the intensive care unit (ICU) of the Affiliated Hospital of Qingdao University from August 2021 to January 2022. All patients enrolled were divided randomly into a training set (80%) and a test set (20%). The least absolute shrinkage and selection operator and stepwise regression analysis were used to determine the independent risk factors for MDRO infection. A BPNN model was constructed based on these factors. Then, we externally validated this model in patients from May 2022 to July 2022 over the same center. The model performance was evaluated by the calibration curve, the area under the curve (AUC), sensitivity, specificity, and accuracy. Results In the primary cohort, 688 patients were enrolled, including 109 (15.84%) MDRO infection patients. Risk factors for MDRO infection, as determined by the primary cohort, included length of hospitalization, length of ICU stay, long-term bed rest, antibiotics use before ICU, acute physiology and chronic health evaluation II, invasive operation before ICU, quantity of antibiotics, chronic lung disease, and hypoproteinemia. There were 238 patients in the validation set, including 31 (13.03%) MDRO infection patients. This BPNN model yielded good calibration. The AUC of the training set, the test set and the validation set were 0.889 (95% CI 0.852–0.925), 0.919 (95% CI 0.856–0.983), and 0.811 (95% CI 0.731–0.891), respectively. Conclusions This study confirmed nine independent risk factors for MDRO infection. The BPNN model performed well and was potentially used to predict MDRO infection in ICU patients.

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3