CRISPR-Cas9 assisted non-homologous end joining genome editing system of Halomonas bluephagenesis for large DNA fragment deletion

Author:

Liu Chunyan,Yue Yaxin,Xue Yanfen,Zhou Cheng,Ma Yanhe

Abstract

Abstract Background Halophiles possess several unique properties and have broad biotechnological applications including industrial biotechnology production. Halomonas spp., especially Halomonas bluephagenesis, have been engineered to produce various biopolyesters such as polyhydroxyalkanoates (PHA), some proteins, small molecular compounds, organic acids, and has the potential to become a chassis cell for the next-generation of industrial biotechnology (NGIB) owing to its simple culture, fast growth, contamination-resistant, low production cost, and high production value. An efficient genome editing system is the key for its engineering and application. However, the efficiency of the established CRISPR-Cas-homologous recombination (HR) gene editing tool for large DNA fragments was still relatively low. In this study, we firstly report a CRISPR-Cas9 gene editing system combined with a non-homologous end joining (NHEJ) repair system for efficient large DNA fragment deletion in Halomonas bluephagenesis. Results Three different NHEJ repair systems were selected and functionally identified in Halomonas bluephagenesis TD01. The NHEJ system from M. tuberculosis H37Rv (Mt-NHEJ) can functionally work in H. bluephagenesis TD01, resulting in base deletion of different lengths for different genes and some random base insertions. Factors affecting knockout efficiencies, such as the number and position of sgRNAs on the DNA double-strands, the Cas9 protein promoter, and the interaction between the HR and the NHEJ repair system, were further investigated. Finally, the optimized CRISPR-Cas9-NHEJ editing system was able to delete DNA fragments up to 50 kb rapidly with high efficiency of 31.3%, when three sgRNAs on the Crick/Watson/Watson DNA double-strands and the arabinose-induced promoter Para for Cas9 were used, along with the background expression of the HR repair system. Conclusions This was the first report of CRISPR-Cas9 gene editing system combined with a non-homologous end joining (NHEJ) repair system for efficient large DNA fragment deletion in Halomonas spp. These results not only suggest that this editing system is a powerful genome engineering tool for constructing chassis cells in Halomonas, but also extend the application of the NHEJ repair system.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3