Establishment of microbial model communities capable of removing trace organic chemicals for biotransformation mechanisms research

Author:

Cao Lijia,Garcia Sarahi L.,Wurzbacher Christian

Abstract

Abstract Background Removal of trace organic chemicals (TOrCs) in aquatic environments has been intensively studied. Some members of natural microbial communities play a vital role in transforming chemical contaminants, however, complex microbial interactions impede us from gaining adequate understanding of TOrC biotransformation mechanisms. To simplify, in this study, we propose a strategy of establishing reduced-richness model communities capable of removing diverse TOrCs via pre-adaptation and dilution-to-extinction. Results Microbial communities were adapted from tap water, soil, sand, sediment deep and sediment surface to changing concentrations of 27 TOrCs mixture. After adaptation, the communities were further diluted to reduce diversity into 96 deep well plates for high-throughput cultivation. After characterizing microbial structure and TOrC removal performance, thirty taxonomically non-redundant model communities with different removal abilities were obtained. The pre-adaptation process was found to reduce the microbial richness but to increase the evenness and phylogenetic diversity of resulting model communities. Moreover, phylogenetic diversity showed a positive effect on the number of TOrCs that can be transformed simultaneously. Pre-adaptation also improved the overall TOrC removal rates, which was found to be positively correlated with the growth rates of model communities. Conclusions This is the first study that investigated a wide range of TOrC biotransformation based on different model communities derived from varying natural microbial systems. This study provides a standardized workflow of establishing model communities for different metabolic purposes with changeable inoculum and substrates. The obtained model communities can be further used to find the driving agents of TOrC biotransformation at the enzyme/gene level.

Funder

China Scholarship Council

Stockholms Universitet

Deutsche Forschungsgemeinschaft

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3