T2 and T17 cytokines alter the cargo and function of airway epithelium-derived extracellular vesicles

Author:

Ax ElisabethORCID,Jevnikar Zala,Cvjetkovic AleksanderORCID,Malmhäll CarinaORCID,Olsson Henric,Rådinger MadeleineORCID,Lässer CeciliaORCID

Abstract

Abstract Background Asthma is a common and heterogeneous disease that includes subgroups characterized by type 2 (T2) or type 17 (T17) immune responses for which there is a need to identify the underlying mechanisms and biomarkers in order to develop specific therapies. These subgroups can be defined by airway epithelium gene signatures and the airway epithelium has also been implicated to play a significant role in asthma pathology. Extracellular vesicles (EVs) carry functional biomolecules and participate in cell-to-cell communication in both health and disease, properties that are likely to be involved in airway diseases such as asthma. The aim of this study was to identify stimulus-specific proteins and functionality of bronchial epithelium-derived EVs following stimulation with T2 or T17 cytokines. Methods EVs from cytokine-stimulated (T2: IL-4 + IL-13 or T17: IL-17A + TNFα) human bronchial epithelial cells cultured at air-liquid interface (HBEC-ALI) were isolated by density cushion centrifugation and size exclusion chromatography and characterized with Western blotting and electron microscopy. Transcriptomic (cells) and proteomic (EVs) profiling was also performed. Results Our data shows that EVs are secreted and can be isolated from the apical side of HBEC-ALI and that cytokine stimulation increases EV release. Genes upregulated in cells stimulated with T2 or T17 cytokines were increased also on protein level in the EVs. Proteins found in T17-derived EVs were suggested to be involved in pathways related to neutrophil movement which was supported by assessing neutrophil chemotaxis ex vivo. Conclusions Together, the results suggest that epithelial EVs are involved in airway inflammation and that the EV proteome may be used for discovery of disease-specific mechanisms and signatures which may enable a precision medicine approach to the treatment of asthma.

Funder

Hjärt-Lungfonden

Stiftelsen Lars Hiertas Minne

Stiftelsen för Strategisk Forskning

Sahlgrenska Universitetssjukhuset

VBG group Herman Krefting Foundation Asthma and Allergy

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3