Adiponectin ameliorates lung ischemia–reperfusion injury through SIRT1-PINK1 signaling-mediated mitophagy in type 2 diabetic rats

Author:

Jiang Tao,Liu Tianhua,Deng Xijin,Ding Wengang,Yue Ziyong,Yang Wanchao,Lv Xiangqi,Li Wenzhi

Abstract

Abstract Background Diabetes mellitus (DM) is a key contributing factor to poor survival in lung transplantation recipients. Mitochondrial dysfunction is recognized as a critical mediator in the pathogenesis of diabetic lung ischemia–reperfusion (IR) injury. The protective effects of adiponectin have been demonstrated in our previous study, but the underlying mechanism remains unclear. Here we demonstrated an important role of mitophagy in the protective effect of adiponectin during diabetic lung IR injury. Methods High-fat diet-fed streptozotocin-induced type 2 diabetic rats were exposed to adiponectin with or without administration of the SIRT1 inhibitor EX527 following lung transplantation. To determine the mechanisms underlying the action of adiponectin, rat pulmonary microvascular endothelial cells were transfected with SIRT1 small-interfering RNA or PINK1 small-interfering RNA and then subjected to in vitro diabetic lung IR injury. Results Mitophagy was impaired in diabetic lungs subjected to IR injury, which was accompanied by increased oxidative stress, inflammation, apoptosis, and mitochondrial dysfunction. Adiponectin induced mitophagy and attenuated subsequent diabetic lung IR injury by improving lung functional recovery, suppressing oxidative damage, diminishing inflammation, decreasing cell apoptosis, and preserving mitochondrial function. However, either administration of 3-methyladenine (3-MA), an autophagy antagonist or knockdown of PINK1 reduced the protective action of adiponectin. Furthermore, we demonstrated that APN affected PINK1 stabilization via the SIRT1 signaling pathway, and knockdown of SIRT1 suppressed PINK1 expression and compromised the protective effect of adiponectin. Conclusion These data demonstrated that adiponectin attenuated reperfusion-induced oxidative stress, inflammation, apoptosis and mitochondrial dysfunction via activation of SIRT1- PINK1 signaling-mediated mitophagy in diabetic lung IR injury.

Funder

national natural science foundation of china

heilongjiang provincial postdoctoral science foundation

heilongjiang provincial health department research project

Publisher

Springer Science and Business Media LLC

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3