Prediction of the number of asthma patients using environmental factors based on deep learning algorithms

Author:

Hwang Hyemin,Jang Jae-Hyuk,Lee Eunyoung,Park Hae-Sim,Lee Jae Young

Abstract

Abstract Background Air pollution, weather, pollen, and influenza are typical aggravating factors for asthma. Previous studies have identified risk factors using regression-based and ensemble models. However, studies that consider complex relationships and interactions among these factors have yet to be conducted. Although deep learning algorithms can address this problem, further research on modeling and interpreting the results is warranted. Methods In this study, from 2015 to 2019, information about air pollutants, weather conditions, pollen, and influenza were utilized to predict the number of emergency room patients and outpatients with asthma using recurrent neural network, long short-term memory (LSTM), and gated recurrent unit models. The relative importance of the environmental factors in asthma exacerbation was quantified through a feature importance analysis. Results We found that LSTM was the best algorithm for modeling patients with asthma. Our results demonstrated that influenza, temperature, PM10, NO2, CO, and pollen had a significant impact on asthma exacerbation. In addition, the week of the year and the number of holidays per week were an important factor to model the seasonality of the number of asthma patients and the effect of holiday clinic closures, respectively. Conclusion LSTM is an excellent algorithm for modeling complex epidemiological relationships, encompassing nonlinearity, lagged responses, and interactions. Our study findings can guide policymakers in their efforts to understand the environmental factors of asthma exacerbation.

Funder

Ministry of Science and ICT, South Korea

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3