estimateR: an R package to estimate and monitor the effective reproductive number

Author:

Scire JérémieORCID,Huisman Jana S.,Grosu Ana,Angst Daniel C.,Lison Adrian,Li Jinzhou,Maathuis Marloes H.,Bonhoeffer Sebastian,Stadler Tanja

Abstract

Abstract Background Accurate estimation of the effective reproductive number ($$R_e$$ R e ) of epidemic outbreaks is of central relevance to public health policy and decision making. We present estimateR, an R package for the estimation of the reproductive number through time from delayed observations of infection events. Such delayed observations include confirmed cases, hospitalizations or deaths. The package implements the methodology of Huisman et al. but modularizes the $$R_e$$ R e estimation procedure to allow easy implementation of new alternatives to the currently available methods. Users can tailor their analyses according to their particular use case by choosing among implemented options. Results The estimateR R package allows users to estimate the effective reproductive number of an epidemic outbreak based on observed cases, hospitalization, death or any other type of event documenting past infections, in a fast and timely fashion. We validated the implementation with a simulation study: estimateR yielded estimates comparable to alternative publicly available methods while being around two orders of magnitude faster. We then applied estimateR to empirical case-confirmation incidence data for COVID-19 in nine countries and for dengue fever in Brazil; in parallel, estimateR is already being applied (i) to SARS-CoV-2 measurements in wastewater data and (ii) to study influenza transmission based on wastewater and clinical data in other studies. In summary, this R package provides a fast and flexible implementation to estimate the effective reproductive number for various diseases and datasets. Conclusions The estimateR R package is a modular and extendable tool designed for outbreak surveillance and retrospective outbreak investigation. It extends the method developed for COVID-19 by Huisman et al. and makes it available for a variety of pathogens, outbreak scenarios, and observation types. Estimates obtained with estimateR can be interpreted directly or used to inform more complex epidemic models (e.g. for forecasting) on the value of $$R_e$$ R e .

Funder

Swiss National Science foundation

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3