Assignment of structural domains in proteins using diffusion kernels on graphs

Author:

Taheri-Ledari Mohammad,Zandieh Amirali,Shariatpanahi Seyed Peyman,Eslahchi Changiz

Abstract

AbstractThough proposing algorithmic approaches for protein domain decomposition has been of high interest, the inherent ambiguity to the problem makes it still an active area of research. Besides, accurate automated methods are in high demand as the number of solved structures for complex proteins is on the rise. While majority of the previous efforts for decomposition of 3D structures are centered on the developing clustering algorithms, employing enhanced measures of proximity between the amino acids has remained rather uncharted. If there exists a kernel function that in its reproducing kernel Hilbert space, structural domains of proteins become well separated, then protein structures can be parsed into domains without the need to use a complex clustering algorithm. Inspired by this idea, we developed a protein domain decomposition method based on diffusion kernels on protein graphs. We examined all combinations of four graph node kernels and two clustering algorithms to investigate their capability to decompose protein structures. The proposed method is tested on five of the most commonly used benchmark datasets for protein domain assignment plus a comprehensive non-redundant dataset. The results show a competitive performance of the method utilizing one of the diffusion kernels compared to four of the best automatic methods. Our method is also able to offer alternative partitionings for the same structure which is in line with the subjective definition of protein domain. With a competitive accuracy and balanced performance for the simple and complex structures despite relying on a relatively naive criterion to choose optimal decomposition, the proposed method revealed that diffusion kernels on graphs in particular, and kernel functions in general are promising measures to facilitate parsing proteins into domains and performing different structural analysis on proteins. The size and interconnectedness of the protein graphs make them promising targets for diffusion kernels as measures of affinity between amino acids. The versatility of our method allows the implementation of future kernels with higher performance. The source code of the proposed method is accessible at https://github.com/taherimo/kludo. Also, the proposed method is available as a web application from https://cbph.ir/tools/kludo.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3