A learning-based method to predict LncRNA-disease associations by combining CNN and ELM

Author:

Guo Zhen-Hao,Chen Zhan-Heng,You Zhu-Hong,Wang Yan-Bin,Yi Hai-Cheng,Wang Mei-Neng

Abstract

AbstractBackgroundlncRNAs play a critical role in numerous biological processes and life activities, especially diseases. Considering that traditional wet experiments for identifying uncovered lncRNA-disease associations is limited in terms of time consumption and labor cost. It is imperative to construct reliable and efficient computational models as addition for practice. Deep learning technologies have been proved to make impressive contributions in many areas, but the feasibility of it in bioinformatics has not been adequately verified.ResultsIn this paper, a machine learning-based model called LDACE was proposed to predict potential lncRNA-disease associations by combining Extreme Learning Machine (ELM) and Convolutional Neural Network (CNN). Specifically, the representation vectors are constructed by integrating multiple types of biology information including functional similarity and semantic similarity. Then, CNN is applied to mine both local and global features. Finally, ELM is chosen to carry out the prediction task to detect the potential lncRNA-disease associations. The proposed method achieved remarkable Area Under Receiver Operating Characteristic Curve of 0.9086 in Leave-one-out cross-validation and 0.8994 in fivefold cross-validation, respectively. In addition, 2 kinds of case studies based on lung cancer and endometrial cancer indicate the robustness and efficiency of LDACE even in a real environment.ConclusionsSubstantial results demonstrated that the proposed model is expected to be an auxiliary tool to guide and assist biomedical research, and the close integration of deep learning and biology big data will provide life sciences with novel insights.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3