Data integration by fuzzy similarity-based hierarchical clustering

Author:

Ciaramella Angelo,Nardone Davide,Staiano Antonino

Abstract

Abstract Background High throughput methods, in biological and biomedical fields, acquire a large number of molecular parameters or omics data by a single experiment. Combining these omics data can significantly increase the capability for recovering fine-tuned structures or reducing the effects of experimental and biological noise in data. Results In this work we propose a multi-view integration methodology (named FH-Clust) for identifying patient subgroups from different omics information (e.g., Gene Expression, Mirna Expression, Methylation). In particular, hierarchical structures of patient data are obtained in each omic (or view) and finally their topologies are merged by consensus matrix. One of the main aspects of this methodology, is the use of a measure of dissimilarity between sets of observations, by using an appropriate metric. For each view, a dendrogram is obtained by using a hierarchical clustering based on a fuzzy equivalence relation with Łukasiewicz valued fuzzy similarity. Finally, a consensus matrix, that is a representative information of all dendrograms, is formed by combining multiple hierarchical agglomerations by an approach based on transitive consensus matrix construction. Several experiments and comparisons are made on real data (e.g., Glioblastoma, Prostate Cancer) to assess the proposed approach. Conclusions Fuzzy logic allows us to introduce more flexible data agglomeration techniques. From the analysis of scientific literature, it appears to be the first time that a model based on fuzzy logic is used for the agglomeration of multi-omic data. The results suggest that FH-Clust provides better prognostic value and clinical significance compared to the analysis of single-omic data alone and it is very competitive with respect to other techniques from literature.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference21 articles.

1. Camastra F, Di Taranto MD, Staiano A. Statistical and computational methods for genetic diseases: An overview. Comput Math Meth Med. 2015; 2015(Article ID 954598):1–8.

2. Serra A, Fratello M, Fortino V, Raiconi G, Tagliaferri R, Greco D. Mvda: a multi-view genomic data integration methodology. BMC Bioinformatics. 2015; 16(261):1–13.

3. Rappoport N, Shamir R. Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Nucleic Acids Res. 2018; 46(20):10546–62.

4. Reddy CK, Aggarwal CC. Data Clustering. Boca Raton: Chapman and Hall/CRC; 2016.

5. Camastra F, Ciaramella A, Son LH, Riccio A, Staiano A. Fuzzy similarity-based hierarchical clustering for atmospheric pollutants prediction. LNCS. 2019; 11291:123–33.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Differential evolutionary optimization fuzzy entropy for gland segmentation based on breast mammography imaging;Journal of Radiation Research and Applied Sciences;2024-09

2. Advance computational tools for multiomics data learning;Biotechnology Advances;2024-09

3. Unsupervised Learning for Characterizing Type IV Secreted Effectors;2024 4th International Conference on Applied Artificial Intelligence (ICAPAI);2024-04-16

4. Graded Mean Integration Representation and Intuitionistic Fuzzy Weighted Arithmetic Mean for Similarity Measures in Case-Based Reasoning;International Journal of Fuzzy Systems;2024-04-08

5. Improving Real-Time Data Streams Performance on Autonomous Surface Vehicles using DataX;2024 32nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP);2024-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3