C-Norm: a neural approach to few-shot entity normalization

Author:

Ferré ArnaudORCID,Deléger LouiseORCID,Bossy RobertORCID,Zweigenbaum PierreORCID,Nédellec ClaireORCID

Abstract

Abstract Background Entity normalization is an important information extraction task which has gained renewed attention in the last decade, particularly in the biomedical and life science domains. In these domains, and more generally in all specialized domains, this task is still challenging for the latest machine learning-based approaches, which have difficulty handling highly multi-class and few-shot learning problems. To address this issue, we propose C-Norm, a new neural approach which synergistically combines standard and weak supervision, ontological knowledge integration and distributional semantics. Results Our approach greatly outperforms all methods evaluated on the Bacteria Biotope datasets of BioNLP Open Shared Tasks 2019, without integrating any manually-designed domain-specific rules. Conclusions Our results show that relatively shallow neural network methods can perform well in domains that present highly multi-class and few-shot learning problems.

Funder

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference48 articles.

1. Faure D, Nédellec C. A corpus-based conceptual clustering method for verb frames and ontology acquisition. In: LREC workshop on adapting lexical and corpus resources to sublanguages and applications. 1998. p. 5–12.

2. Hwang CH. Incompletely and imprecisely speaking: using dynamic ontologies for representing and retrieving information. KRDB. 1999. p. 13.

3. Nédellec C, Bossy R, Chaix E, Deleger L. Text-mining and ontologies: new approaches to knowledge discovery of microbial diversity. In: 4th international conference on microbial diversity 2017. Marco Gobetti; 2017.

4. Bossy R, Chaix E, Deléger L, Ferré A, Ba M, Bessières P, et al. OntoBiotope: une ontologie pour croiser les habitats microbiens avec les analyses de génomes. In: Les journées Bioinformatique de l’INRA. 2016. p. 1.

5. Ravi S, Larochelle H. Optimization as a model for few-shot learning. In: 8th international conference on learning representations. ICLR 2016, San Juan, Puerto Rico, May 2–4, 2016.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3