ILIAD: a suite of automated Snakemake workflows for processing genomic data for downstream applications

Author:

Herrick Noah,Walsh Susan

Abstract

Abstract Background Processing raw genomic data for downstream applications such as imputation, association studies, and modeling requires numerous third-party bioinformatics software tools. It is highly time-consuming and resource-intensive with computational demands and storage limitations that pose significant challenges that increase cost. The use of software tools independent of one another, in a disjointed stepwise fashion, increases the difficulty and sets forth higher error rates because of fragmented job executions in alignment, variant calling, and/or build conversion complications. As sequencing data availability grows, the ability for biologists to process it using stable, automated, and reproducible workflows is paramount as it significantly reduces the time to generate clean and reliable data. Results The Iliad suite of genomic data workflows was developed to provide users with seamless file transitions from raw genomic data to a quality-controlled variant call format (VCF) file for downstream applications. Iliad benefits from the efficiency of the Snakemake best practices framework coupled with Singularity and Docker containers for repeatability, portability, and ease of installation. This feat is accomplished from the onset with download acquisitions of any raw data type (FASTQ, CRAM, IDAT) straight through to the generation of a clean merged data file that can combine any user-preferred datasets using robust programs such as BWA, Samtools, and BCFtools. Users can customize and direct their workflow with one straightforward configuration file. Iliad is compatible with Linux, MacOS, and Windows platforms and scalable from a local machine to a high-performance computing cluster. Conclusion Iliad offers automated workflows with optimized time and resource management that are comparable to other workflows available but generates analysis-ready VCF files from the most common datatypes using a single command. The storage footprint challenge of genomic data is overcome by utilizing temporary intermediate files before the final VCF is generated. This file is ready for use in imputation, genome-wide association study (GWAS) pipelines, high-throughput population genetics studies, select gene candidate studies, and more. Iliad was developed to be portable, compatible, scalable, robust, and repeatable with a simplistic setup, so biologists that are less familiar with programming can manage their own big data with this open-source suite of workflows.

Funder

National Institute of Justice

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3