Deep learning algorithm reveals two prognostic subtypes in patients with gliomas

Author:

Tian Jing,Zhu Mingzhen,Ren Zijing,Zhao Qiang,Wang Puqing,He Colin K.,Zhang Min,Peng Xiaochun,Wu Beilei,Feng Rujia,Fu Minglong

Abstract

Abstract Background Gliomas are highly complex and heterogeneous tumors, rendering prognosis prediction challenging. The advent of deep learning algorithms and the accessibility of multi-omic data represent a new approach for the identification of survival-sensitive subtypes. Herein, an autoencoder-based approach was used to identify two survival-sensitive subtypes using RNA sequencing (RNA-seq) and DNA methylation (DNAm) data from The Cancer Genome Atlas (TCGA) dataset. The subtypes were used as labels to build a support vector machine model with cross-validation. We validated the robustness of the model on Chinese Glioma Genome Atlas (CGGA) dataset. DNAm-driven genes were identified by integrating DNAm and gene expression profiling analyses using the R MethylMix package and carried out for further enrichment analysis. Results For TCGA dataset, the model produced a high C-index (0.92 ± 0.02), low brier score (0.16 ± 0.02), and significant log-rank p value (p < 0.0001). The model also had a decent performance for CGGA dataset (CGGA DNAm: C-index of 0.70, brier score of 0.21; CGGA RNA-seq: C-index of 0.79, brier score of 0.18). Moreover, we identified 389 DNAm-driven genes of survival-sensitive subtypes, which were significantly enriched in the glutathione metabolism pathway. Conclusions Our study identified two survival-sensitive subtypes of glioma and provided insights into the molecular mechanisms underlying glioma development; thus, potentially providing a new target for the prognostic prediction of gliomas and supporting personalized treatment strategies.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3