A new biomarker panel of ultraconserved long non-coding RNAs for bladder cancer prognosis by a machine learning based methodology

Author:

Ciaramella AngeloORCID,Di Nardo Emanuel,Terracciano Daniela,Conte Lia,Febbraio Ferdinando,Cimmino Amelia

Abstract

Abstract Background Recent studies have indicated that a special class of long non-coding RNAs (lncRNAs), namely Transcribed-Ultraconservative Regions are transcribed from specific DNA regions (T-UCRs), 100$$\%$$ % conserved in human, mouse, and rat genomes. This is noticeable, as lncRNAs are usually poorly conserved. Despite their peculiarities, T-UCRs remain very understudied in many diseases, including cancer and, yet, it is known that dysregulation of T-UCRs is associated with cancer as well as with human neurological, cardiovascular, and developmental pathologies. We have recently reported the T-UCR uc.8+ as a potential prognostic biomarker in bladder cancer. Results The aim of this work is to develop a methodology, based on machine learning techniques, for the selection of a predictive signature panel for bladder cancer onset. To this end, we analyzed the expression profiles of T-UCRs from surgically removed normal and bladder cancer tissues, by using custom expression microarray. Bladder tissue samples from 24 bladder cancer patients (12 Low Grade and 12 High Grade), with complete clinical data, and 17 control samples from normal bladder epithelium were analysed. After the selection of preferentially expressed and statistically significant T-UCRs, we adopted an ensemble of statistical and machine learning based approaches (i.e., logistic regression, Random Forest, XGBoost and LASSO) for ranking the most important diagnostic molecules. We identified a signature panel of 13 selected T-UCRs with altered expression profiles in cancer, able to efficiently discriminate between normal and bladder cancer patient samples. Also, using this signature panel, we classified bladder cancer patients in four groups, each characterized by a different survival extent. As expected, the group including only Low Grade bladder cancer patients had greater overall survival than patients with the majority of High Grade bladder cancer. However, a specific signature of deregulated T-UCRs identifies sub-types of bladder cancer patients with different prognosis regardless of the bladder cancer Grade. Conclusions Here we present the results for the classification of bladder cancer (Low and High Grade) patient samples and normal bladder epithelium controls by using a machine learning application. The T-UCR’s panel can be used for learning an eXplainable Artificial Intelligent model and develop a robust decision support system for bladder cancer early diagnosis providing urinary T-UCRs data of new patients. The use of this system instead of the current methodology will result in a non-invasive approach, reducing uncomfortable procedures (such as cystoscopy) for the patients. Overall, these results raise the possibility of new automatic systems, which could help the RNA-based prognosis and/or the cancer therapy in bladder cancer patients, and demonstrate the successful application of Artificial Intelligence to the definition of an independent prognostic biomarker panel.

Funder

Regione Campania

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3