BG2: Bayesian variable selection in generalized linear mixed models with nonlocal priors for non-Gaussian GWAS data
-
Published:2023-09-15
Issue:1
Volume:24
Page:
-
ISSN:1471-2105
-
Container-title:BMC Bioinformatics
-
language:en
-
Short-container-title:BMC Bioinformatics
Author:
Xu Shuangshuang,Williams Jacob,Ferreira Marco A. R.
Abstract
Abstract
Background
Genome-wide association studies (GWASes) aim to identify single nucleotide polymorphisms (SNPs) associated with a given phenotype. A common approach for the analysis of GWAS is single marker analysis (SMA) based on linear mixed models (LMMs). However, LMM-based SMA usually yields a large number of false discoveries and cannot be directly applied to non-Gaussian phenotypes such as count data.
Results
We present a novel Bayesian method to find SNPs associated with non-Gaussian phenotypes. To that end, we use generalized linear mixed models (GLMMs) and, thus, call our method Bayesian GLMMs for GWAS (BG2). To deal with the high dimensionality of GWAS analysis, we propose novel nonlocal priors specifically tailored for GLMMs. In addition, we develop related fast approximate Bayesian computations. BG2 uses a two-step procedure: first, BG2 screens for candidate SNPs; second, BG2 performs model selection that considers all screened candidate SNPs as possible regressors. A simulation study shows favorable performance of BG2 when compared to GLMM-based SMA. We illustrate the usefulness and flexibility of BG2 with three case studies on cocaine dependence (binary data), alcohol consumption (count data), and number of root-like structures in a model plant (count data).
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference44 articles.
1. Zhang X, Ding W, Xue D, Li X, Zhou Y, Shen J, Feng J, Guo N, Qiu L, Xing H, et al. Genome-wide association studies of plant architecture-related traits and 100-seed weight in soybean landraces. BMC Genomic Data. 2021;22(1):1–14. 2. Julkowska MM, Koevoets IT, Mol S, Hoefsloot H, Feron R, Tester MA, Keurentjes JJ, Korte A, Haring MA, de Boer G-J, et al. Genetic components of root architecture remodeling in response to salt stress. Plant Cell. 2017;29(12):3198–213. 3. Zhang H, Ahearn TU, Lecarpentier J, Barnes D, Beesley J, Qi G, Jiang X, O’Mara TA, Zhao N, Bolla MK, et al. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nat Genet. 2020;52(6):572–81. 4. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006;38(2):203–8. 5. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E. Efficient control of population structure in model organism association mapping. Genetics. 2008;178(3):1709–23.
|
|