CNVind: an open source cloud-based pipeline for rare CNVs detection in whole exome sequencing data based on the depth of coverage

Author:

Kuśmirek Wiktor,Nowak Robert

Abstract

Abstract Background A typical Copy Number Variations (CNVs) detection process based on the depth of coverage in the Whole Exome Sequencing (WES) data consists of several steps: (I) calculating the depth of coverage in sequencing regions, (II) quality control, (III) normalizing the depth of coverage, (IV) calling CNVs. Previous tools performed one normalization process for each chromosome—all the coverage depths in the sequencing regions from a given chromosome were normalized in a single run. Methods Herein, we present the new CNVind tool for calling CNVs, where the normalization process is conducted separately for each of the sequencing regions. The total number of normalizations is equal to the number of sequencing regions in the investigated dataset. For example, when analyzing a dataset composed of n sequencing regions, CNVind performs n independent depth of coverage normalizations. Before each normalization, the application selects the k most correlated sequencing regions with the depth of coverage Pearson’s Correlation as distance metric. Then, the resulting subgroup of $$k+1$$ k + 1 sequencing regions is normalized, the results of all n independent normalizations are combined; finally, the segmentation and CNV calling process is performed on the resultant dataset. Results and conclusions We used WES data from the 1000 Genomes project to evaluate the impact of independent normalization on CNV calling performance and compared the results with state-of-the-art tools: CODEX and exomeCopy. The results proved that independent normalization allows to improve the rare CNVs detection specificity significantly. For example, for the investigated dataset, we reduced the number of FP calls from over 15,000 to around 5000 while maintaining a constant number of TP calls equal to about 150 CNVs. However, independent normalization of each sequencing region is a computationally expensive process, therefore our pipeline is customized and can be easily run in the cloud computing environment, on the computer cluster, or the single CPU server. To our knowledge, the presented application is the first attempt to implement an innovative approach to independent normalization of the depth of WES data coverage.

Funder

Polish National Science Center

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3