A novel hybrid model to predict concomitant diseases for Hashimoto’s thyroiditis

Author:

Ataş Pınar Karadayı

Abstract

AbstractHashimoto’s thyroiditis is an autoimmune disorder characterized by the destruction of thyroid cells through immune-mediated mechanisms involving cells and antibodies. The condition can trigger disturbances in metabolism, leading to the development of other autoimmune diseases, known as concomitant diseases. Multiple concomitant diseases may coexist in a single individual, making it challenging to diagnose and manage them effectively. This study aims to propose a novel hybrid algorithm that classifies concomitant diseases associated with Hashimoto’s thyroiditis based on sequences. The approach involves building distinct prediction models for each class and using the output of one model as input for the subsequent one, resulting in a dynamic decision-making process. Genes associated with concomitant diseases were collected alongside those related to Hashimoto’s thyroiditis, and their sequences were obtained from the NCBI site in fasta format. The hybrid algorithm was evaluated against common machine learning algorithms and their various combinations. The experimental results demonstrate that the proposed hybrid model outperforms existing classification methods in terms of performance metrics. The significance of this study lies in its two distinctive aspects. Firstly, it presents a new benchmarking dataset that has not been previously developed in this field, using diverse methods. Secondly, it proposes a more effective and efficient solution that accounts for the dynamic nature of the dataset. The hybrid approach holds promise in investigating the genetic heterogeneity of complex diseases such as Hashimoto’s thyroiditis and identifying new autoimmune disease genes. Additionally, the results of this study may aid in the development of genetic screening tools and laboratory experiments targeting Hashimoto’s thyroiditis genetic risk factors. New software, models, and techniques for computing, including systems biology, machine learning, and artificial intelligence, are used in our study.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3