DiCleave: a deep learning model for predicting human Dicer cleavage sites

Author:

Mu Lixuan,Song Jiangning,Akutsu Tatsuya,Mori Tomoya

Abstract

Abstract Background MicroRNAs (miRNAs) are a class of non-coding RNAs that play a pivotal role as gene expression regulators. These miRNAs are typically approximately 20 to 25 nucleotides long. The maturation of miRNAs requires Dicer cleavage at specific sites within the precursor miRNAs (pre-miRNAs). Recent advances in machine learning-based approaches for cleavage site prediction, such as PHDcleav and LBSizeCleav, have been reported. ReCGBM, a gradient boosting-based model, demonstrates superior performance compared with existing methods. Nonetheless, ReCGBM operates solely as a binary classifier despite the presence of two cleavage sites in a typical pre-miRNA. Previous approaches have focused on utilizing only a fraction of the structural information in pre-miRNAs, often overlooking comprehensive secondary structure information. There is a compelling need for the development of a novel model to address these limitations. Results In this study, we developed a deep learning model for predicting the presence of a Dicer cleavage site within a pre-miRNA segment. This model was enhanced by an autoencoder that learned the secondary structure embeddings of pre-miRNA. Benchmarking experiments demonstrated that the performance of our model was comparable to that of ReCGBM in the binary classification tasks. In addition, our model excelled in multi-class classification tasks, making it a more versatile and practical solution than ReCGBM. Conclusions Our proposed model exhibited superior performance compared with the current state-of-the-art model, underscoring the effectiveness of a deep learning approach in predicting Dicer cleavage sites. Furthermore, our model could be trained using only sequence and secondary structure information. Its capacity to accommodate multi-class classification tasks has enhanced the practical utility of our model.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3