A novel approach toward optimal workflow selection for DNA methylation biomarker discovery

Author:

Nazer Naghme,Sepehri Mohammad Hossein,Mohammadzade Hoda,Mehrmohamadi Mahya

Abstract

AbstractDNA methylation is a major epigenetic modification involved in many physiological processes. Normal methylation patterns are disrupted in many diseases and methylation-based biomarkers have shown promise in several contexts. Marker discovery typically involves the analysis of publicly available DNA methylation data from high-throughput assays. Numerous methods for identification of differentially methylated biomarkers have been developed, making the need for best practices guidelines and context-specific analyses workflows exceedingly high. To this end, here we propose TASA, a novel method for simulating methylation array data in various scenarios. We then comprehensively assess different data analysis workflows using real and simulated data and suggest optimal start-to-finish analysis workflows. Our study demonstrates that the choice of analysis pipeline for DNA methylation-based marker discovery is crucial and different across different contexts.

Funder

Converging Technologies Development Center of Vice Presidency for Science Technology and Knowledge-based Economy

Research and Technology Office of SUT

Iran National Science Foundation

Kazemi-Ashtiani from BMN

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3