AMEND: active module identification using experimental data and network diffusion

Author:

Boyd Samuel S.,Slawson Chad,Thompson Jeffrey A.

Abstract

Abstract Background Molecular interaction networks have become an important tool in providing context to the results of various omics experiments. For example, by integrating transcriptomic data and protein–protein interaction (PPI) networks, one can better understand how the altered expression of several genes are related with one another. The challenge then becomes how to determine, in the context of the interaction network, the subset(s) of genes that best captures the main mechanisms underlying the experimental conditions. Different algorithms have been developed to address this challenge, each with specific biological questions in mind. One emerging area of interest is to determine which genes are equivalently or inversely changed between different experiments. The equivalent change index (ECI) is a recently proposed metric that measures the extent to which a gene is equivalently or inversely regulated between two experiments. The goal of this work is to develop an algorithm that makes use of the ECI and powerful network analysis techniques to identify a connected subset of genes that are highly relevant to the experimental conditions. Results To address the above goal, we developed a method called Active Module identification using Experimental data and Network Diffusion (AMEND). The AMEND algorithm is designed to find a subset of connected genes in a PPI network that have large experimental values. It makes use of random walk with restart to create gene weights, and a heuristic solution to the Maximum-weight Connected Subgraph problem using these weights. This is performed iteratively until an optimal subnetwork (i.e., active module) is found. AMEND was compared to two current methods, NetCore and DOMINO, using two gene expression datasets. Conclusion The AMEND algorithm is an effective, fast, and easy-to-use method for identifying network-based active modules. It returned connected subnetworks with the largest median ECI by magnitude, capturing distinct but related functional groups of genes. Code is freely available at https://github.com/samboyd0/AMEND.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3