Profiling the BLAST bioinformatics application for load balancing on high-performance computing clusters

Author:

Cheng Trinity,Chin Pei-Ju,Cha Kenny,Petrick Nicholas,Mikailov Mike

Abstract

Abstract Background The Basic Local Alignment Search Tool (BLAST) is a suite of commonly used algorithms for identifying matches between biological sequences. The user supplies a database file and query file of sequences for BLAST to find identical sequences between the two. The typical millions of database and query sequences make BLAST computationally challenging but also well suited for parallelization on high-performance computing clusters. The efficacy of parallelization depends on the data partitioning, where the optimal data partitioning relies on an accurate performance model. In previous studies, a BLAST job was sped up by 27 times by partitioning the database and query among thousands of processor nodes. However, the optimality of the partitioning method was not studied. Unlike BLAST performance models proposed in the literature that usually have problem size and hardware configuration as the only variables, the execution time of a BLAST job is a function of database size, query size, and hardware capability. In this work, the nucleotide BLAST application BLASTN was profiled using three methods: shell-level profiling with the Unix “time” command, code-level profiling with the built-in “profiler” module, and system-level profiling with the Unix “gprof” program. The runtimes were measured for six node types, using six different database files and 15 query files, on a heterogeneous HPC cluster with 500+ nodes. The empirical measurement data were fitted with quadratic functions to develop performance models that were used to guide the data parallelization for BLASTN jobs. Results Profiling results showed that BLASTN contains more than 34,500 different functions, but a single function, RunMTBySplitDB, takes 99.12% of the total runtime. Among its 53 child functions, five core functions were identified to make up 92.12% of the overall BLASTN runtime. Based on the performance models, static load balancing algorithms can be applied to the BLASTN input data to minimize the runtime of the longest job on an HPC cluster. Four test cases being run on homogeneous and heterogeneous clusters were tested. Experiment results showed that the runtime can be reduced by 81% on a homogeneous cluster and by 20% on a heterogeneous cluster by re-distributing the workload. Discussion Optimal data partitioning can improve BLASTN’s overall runtime 5.4-fold in comparison with dividing the database and query into the same number of fragments. The proposed methodology can be used in the other applications in the BLAST+ suite or any other application as long as source code is available.

Funder

Oak Ridge Institute for Science and Education

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference20 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3