Predicting active enhancers with DNA methylation and histone modification

Author:

Luo Ximei,Li Qun,Tang Yifan,Liu Yan,Zou Quan,Zheng Jie,Zhang Ying,Xu Lei

Abstract

Abstract Background Enhancers play a crucial role in gene regulation, and some active enhancers produce noncoding RNAs known as enhancer RNAs (eRNAs) bi-directionally. The most commonly used method for detecting eRNAs is CAGE-seq, but the instability of eRNAs in vivo leads to data noise in sequencing results. Unfortunately, there is currently a lack of research focused on the noise inherent in CAGE-seq data, and few approaches have been developed for predicting eRNAs. Bridging this gap and developing widely applicable eRNA prediction models is of utmost importance. Results In this study, we proposed a method to reduce false positives in the identification of eRNAs by adjusting the statistical distribution of expression levels. We also developed eRNA prediction models using joint gene expressions, DNA methylation, and histone modification. These models achieved impressive performance with an AUC value of approximately 0.95 for intra-cell prediction and 0.9 for cross-cell prediction. Conclusions Our method effectively attenuates the noise generated by stochastic RNA production, resulting in more accurate detection of eRNAs. Furthermore, our eRNA prediction model exhibited significant accuracy in both intra-cell and cross-cell validation, highlighting its robustness and potential application in various cellular contexts.

Funder

Postdoctoral Science Foundation of China

National Natural Science Foundation of China

Shenzhen Polytechnic Research Fund

Sichuan Provincial Science Fund for Distinguished Young Scholars

Municipal Government of Quzhou

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3