InClust+: the deep generative framework with mask modules for multimodal data integration, imputation, and cross-modal generation

Author:

Wang Lifei,Nie Rui,Miao Xuexia,Cai Yankai,Wang Anqi,Zhang Hanwen,Zhang Jiang,Cai Jun

Abstract

Abstract Background With the development of single-cell technology, many cell traits can be measured. Furthermore, the multi-omics profiling technology could jointly measure two or more traits in a single cell simultaneously. In order to process the various data accumulated rapidly, computational methods for multimodal data integration are needed. Results Here, we present inClust+, a deep generative framework for the multi-omics. It’s built on previous inClust that is specific for transcriptome data, and augmented with two mask modules designed for multimodal data processing: an input-mask module in front of the encoder and an output-mask module behind the decoder. InClust+ was first used to integrate scRNA-seq and MERFISH data from similar cell populations, and to impute MERFISH data based on scRNA-seq data. Then, inClust+ was shown to have the capability to integrate the multimodal data (e.g. tri-modal data with gene expression, chromatin accessibility and protein abundance) with batch effect. Finally, inClust+ was used to integrate an unlabeled monomodal scRNA-seq dataset and two labeled multimodal CITE-seq datasets, transfer labels from CITE-seq datasets to scRNA-seq dataset, and generate the missing modality of protein abundance in monomodal scRNA-seq data. In the above examples, the performance of inClust+ is better than or comparable to the most recent tools in the corresponding task. Conclusions The inClust+ is a suitable framework for handling multimodal data. Meanwhile, the successful implementation of mask in inClust+ means that it can be applied to other deep learning methods with similar encoder-decoder architecture to broaden the application scope of these models.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3