PredictEFC: a fast and efficient multi-label classifier for predicting enzyme family classes

Author:

Chen Lei,Zhang Chenyu,Xu Jing

Abstract

Abstract Background Enzymes play an irreplaceable and important role in maintaining the lives of living organisms. The Enzyme Commission (EC) number of an enzyme indicates its essential functions. Correct identification of the first digit (family class) of the EC number for a given enzyme is a hot topic in the past twenty years. Several previous methods adopted functional domain composition to represent enzymes. However, it would lead to dimension disaster, thereby reducing the efficiency of the methods. On the other hand, most previous methods can only deal with enzymes belonging to one family class. In fact, several enzymes belong to two or more family classes. Results In this study, a fast and efficient multi-label classifier, named PredictEFC, was designed. To construct this classifier, a novel feature extraction scheme was designed for processing functional domain information of enzymes, which counting the distribution of each functional domain entry across seven family classes in the training dataset. Based on this scheme, each training or test enzyme was encoded into a 7-dimenion vector by fusing its functional domain information and above statistical results. Random k-labelsets (RAKEL) was adopted to build the classifier, where random forest was selected as the base classification algorithm. The two tenfold cross-validation results on the training dataset shown that the accuracy of PredictEFC can reach 0.8493 and 0.8370. The independent test on two datasets indicated the accuracy values of 0.9118 and 0.8777. Conclusion The performance of PredictEFC was slightly lower than the classifier directly using functional domain composition. However, its efficiency was sharply improved. The running time was less than one-tenth of the time of the classifier directly using functional domain composition. In additional, the utility of PredictEFC was superior to the classifiers using traditional dimensionality reduction methods and some previous methods, and this classifier can be transplanted for predicting enzyme family classes of other species. Finally, a web-server available at http://124.221.158.221/ was set up for easy usage.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3