Thermospheric wind response to a sudden ionospheric variation in the trough: event at a pseudo-breakup during geomagnetically quiet conditions

Author:

Oyama Shin-ichiroORCID,Vanhamäki Heikki,Cai Lei,Aikio Anita,Rietveld Michael,Ogawa Yasunobu,Raita Tero,Kellinsalmi Mirjam,Kauristie Kirsti,Kozelov Boris,Shinbori Atsuki,Shiokawa Kazuo,Tsuda Takuo T.,Sakanoi Takeshi

Abstract

AbstractThe thermospheric wind response to a sudden westward turning of the ion velocity at a high latitude was studied by analyzing data obtained with a Fabry–Perot interferometer (FPI; 630 nm), Dynasonde, and Swarm A & C satellites during a conjunction event. The event occurred during a geomagnetically quiet period (Kp = 0 +) through the night, but some auroral activity occurred in the north. The collocated FPI and Dynasonde measured the thermospheric wind (U) and ionospheric plasma velocity (V), respectively, in the F region at the equatorward trough edge. A notable scientific message from this study is the possible role of thermospheric wind in the energy dissipation process at F-region altitude. The FPI thermospheric wind did not instantly follow a sudden V change due to thermospheric inertia in the F region. At a pseudo-breakup during the event, V suddenly changed direction from eastward to westward within 10 min. U was concurrently accelerated westward, but its development was more gradual than that of V, with U remaining eastward for a while after the pseudo-breakup. The delay of U is attributed to the thermospheric inertia. During this transition interval, UV was negative, which would result in more efficient generation of frictional heating than the positive UV case. The sign of UV, which is related to the relative directions of the neutral wind and plasma drift, is important because of its direct impact on ion-neutral energy exchange during collisions. This becomes especially important during substorm events, where rapid plasma velocity changes are common. The sign of UV may be used as an indicator to find the times and locations where thermospheric inertia plays a role in the energy dissipation process. Graphical Abstract

Funder

Japan Society for the Promotion of Science

Japan Society for the Promotion of Science London

Academy of Finland

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3