Examination of shallow and deep S-wave velocity structures from microtremor array measurements and receiver function analysis at strong-motion stations in Kathmandu basin, Nepal

Author:

Shigefuji MichikoORCID,Takai NobuoORCID,Bijukchhen Subeg ManORCID,Timsina ChintanORCID,Bhattarai Mukunda

Abstract

AbstractThe Himalayan collision zone, where the Indian Plate subducts beneath the Eurasian Plate at a low angle, has caused many devastating earthquakes. The Kathmandu basin, situated in this region, is surrounded by mountains on all sides and is filled with distinct soft lake sediments with a highly undulating bedrock topography. The basin has been experiencing rapid urbanization, and the growing population in its major cities has increased the vulnerability to seismic risk during future earthquakes. Several strong-motion stations have recently been deployed in the Kathmandu basin. It is expected that the data captured by this strong-motion station array will further enhance our understanding of site amplification in sedimentary basins. Clear P-to-S converted waves have been observed in the strong-motion records. In this study, we investigate the medium boundary that generated these converted waves. First, we estimate the shallow velocity structures, which correspond to the topographic slopes or surface geology, beneath the strong-motion stations. We then apply a receiver function analysis to the strong-motion records. The receiver function indicates that the interface between the soft sediment and seismic bedrock serves as a boundary that generates converted waves. The obtained results can be used for tuning three-dimensional velocity structures. Graphical Abstract

Funder

Science and Technology Research Partnership for Sustainable Development

Japan Science and Technology Corporation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3