Chemical assessment of the explosive chamber in the projector system of Hayabusa2 for asteroid sampling
-
Published:2020-07-11
Issue:1
Volume:72
Page:
-
ISSN:1880-5981
-
Container-title:Earth, Planets and Space
-
language:en
-
Short-container-title:Earth Planets Space
Author:
Takano YoshinoriORCID, Yamada Keita, Okamoto Chisato, Sawada Hirotaka, Okazaki Ryuji, Sakamoto Kanako, Kebukawa YokoORCID, Kiryu Kento, Shibuya Takazo, Igisu Motoko, Yano HajimeORCID, Tachibana ShogoORCID,
Abstract
AbstractWe report a chemical assessment of the explosive chamber in the projector system used during the sampling operation of the Hayabusa2 project at the surface of the C-type asteroid Ryugu. Although the explosion process was designed as a closed system, volatile combustion gases and semivolatile organics were produced together with quenched carbonaceous product. The chemical compositions of the gases, organics, and inorganics were investigated in the screening analysis. A solid-phase microextraction technique and thermal desorption coupled with gas chromatography/mass spectrometry analysis revealed that aliphatic (< C20n-alkanes) and aromatic (< pyrene) hydrocarbons were produced in the closed chamber system. The aromatic ring compositions of the latter showed a semilogarithmic decrease: one ring > two rings > three rings > four rings, resulting in abiogenic molecular patterns. The most intense inorganic fingerprints were due to potassium (K+) and chloride (Cl–) ions derived from the initial KTB explosive and RK ignition charge. We discuss quality control and quality assurance issues applicable to future sample processes during the Hayabusa2 project.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Geology
Reference40 articles.
1. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148. https://doi.org/10.1021/ac00218a019 2. Chan QHS, Stroud R, Martins Z, Yabuta H (2020) Concerns of organic contamination for sample return space missions. Space Sci Rev 216:56. https://doi.org/10.1007/s11214-020-00678-7 3. Chen P, Huang F, Yun S (2003) Characterization of the condensed carbon in detonation soot. Carbon 41:2093–2099. https://doi.org/10.1016/S0008-6223(03)00229-X 4. Dworkin JP, Adelman LA, Ajluni T, Andronikov AV, Aponte JC, Bartels AE, Beshore E, Bierhaus EB, Brucato JR, Bryan BH, Burton AS, Callahan MP, Castro-Wallace SL, Clark BC, Clemett SJ, Connolly HC, Cutlip WE, Daly SM, Elliott VE, Elsila JE, Enos HL, Everett DF, Franchi IA, Glavin DP, Graham HV, Hendershot JE, Harris JW, Hill SL, Hildebrand AR, Jayne GO, Jenkens RW, Johnson KS, Kirsch JS, Lauretta DS, Lewis AS, Loiacono JJ, Lorentson CC, Marshall JR, Martin MG, Matthias LL, McLain HL, Messenger SR, Mink RG, Moore JL, Nakamura-Messenger K, Nuth JA, Owens CV, Parish CL, Perkins BD, Pryzby MS, Reigle CA, Righter K, Rizk B, Russell JF, Sandford SA, Schepis JP, Songer J, Sovinski MF, Stahl SE, Thomas-Keprta K, Vellinga JM, Walker MS (2017) OSIRIS-REx Contamination control strategy and implementation. Space Sci Rev 214:19. https://doi.org/10.1007/s11214-017-0439-4 5. Fujiwara A, Yano H (2005) The asteroidal surface sampling system onboard the Hayabusa spacecraft. Aeronaut Space Sci Japan 53:264–271. https://doi.org/10.14822/kjsass.53.620_264
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|