Resilient outage recovery of a distribution system: co-optimizing mobile power sources with network structure

Author:

Li Chenchen,Xi Yanna,Lu Yufan,Liu Nian,Chen Liudong,Ju Li,Tao Yibin

Abstract

AbstractOutage recovery is important for reducing the economic cost and improving the reliability of a distribution system (DS) in extreme weather and with equipment faults. Previous studies have separately considered network reconfiguration (NR) and dispatching mobile power sources (MPS) to restore the outage load. However, NR cannot deal with the scenario of an electrical island, while dispatching MPS results in a long power outage. In this paper, a resilient outage recovery method based on co-optimizing MPS and NR is proposed, where the DS and traffic network (TN) are considered simultaneously. In the DS, the switch action cost and power losses are minimized, and the access points of MPSs are changed by carrying out the NR process. In the TN, an MPS dispatching model with the objective of minimizing power outage time, routing and power generation cost is developed to optimize the MPSs’ schedule. A solution algorithm based on iteration and relaxation methods is proposed to simplify the solving process and obtain the optimal recovery strategy. Finally, numerical case studies on the IEEE 33 and 119-bus systems validate the proposed resilient outage recovery method. It is shown that the access point of MPS can be changed by NR to decrease the power outage time and dispatching cost of MPS. The results also show that the system operation cost can be reduced by considering power losses in the objective function.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3