Prediction of long-term kinetics of vaccine-elicited neutralizing antibody and time-varying vaccine-specific efficacy against the SARS-CoV-2 Delta variant by clinical endpoint

Author:

Chen Xinhua,Wang Wei,Chen Xinghui,Wu Qianhui,Sun Ruijia,Ge Shijia,Zheng Nan,Lu Wanying,Yang Juan,Rodewald Lance,Yu Hongjie

Abstract

Abstract Background Evidence on vaccine-specific protection over time, in particular against the Delta variant, and protection afforded by a homologous third dose is urgently needed. Methods We used a previously published model and neutralization data for five vaccines—mRNA-1273, BNT162b2, NVX-CoV2373, V01, and CoronaVac— to evaluate long-term neutralizing antibody dynamics and predict time-varying efficacy against the Delta variant by specific vaccine, age group, and clinical severity. Results We found that homologous third-dose vaccination produces higher neutralization titers compared with titers observed following primary-series vaccination for all vaccines studied. We estimate the efficacy of mRNA-1273 and BNT162b2 against Delta variant infection to be 63.5% (95% CI: 51.4–67.3%) and 78.4% (95% CI: 72.2–83.5%), respectively, 14–30 days after the second dose, and that efficacy decreases to 36.0% (95% CI: 24.1–58.0%) and 38.5% (95% CI: 28.7–49.1%) 6–8 months later. Fourteen to 30 days after administration of homologous third doses, efficacy against the Delta variant would be 97.0% (95% CI: 96.4–98.5%) and 97.2% (95.7–98.1%). All five vaccines are predicted to provide good protection against severe illness from the Delta variant after both primary and homologous third dose vaccination. Conclusions Timely administration of third doses of SARS-CoV-2-prototype-based vaccines can provide protection against the Delta variant, with better performance from mRNA vaccines than from protein and inactivated vaccines. Irrespective of vaccine technology, a homologous third dose for all types of vaccines included in the study will effectively prevent symptomatic and severe COVID-19 caused by the Delta variant. Long-term monitoring and surveillance of antibody dynamics and vaccine protection, as well as further validation of neutralizing antibody levels or other markers that can serve as correlates of protection against SARS-CoV-2 and its variants, are needed to inform COVID-19 pandemic responses.

Funder

Key Program of the National Natural Science Foundation of China

National Postdoctoral Program for Innovative Talent

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3