Association between being large for gestational age and cardiovascular metabolic health in children conceived from assisted reproductive technology: a prospective cohort study

Author:

Zhang Yiyuan,Dai Kexin,Chen Xiaojing,Cui LinlinORCID,Chen Zi-Jiang

Abstract

Abstract Background To the best of our knowledge, no study has investigated the potential joint effect of large for gestational age (LGA) and assisted reproductive technology (ART) on the long-term health of children. Methods This was a prospective cohort study that recruited children whose parents had received ART treatment in the Center for Reproductive Medicine, Shandong Provincial Hospital, affiliated to Shandong University, between January 2006 and December 2017. Linear mixed model was used to compare the main outcomes. The mediation model was used to evaluate the intermediary effect of body mass index (BMI). Results 4138 (29.5%) children born LGA and 9910 (70.5%) children born appropriate for gestational age (AGA) were included in the present study. The offspring ranged from 0.4 to 9.9 years. LGAs conceived through ART were shown to have higher BMI, blood pressure, fasting blood glucose, fasting insulin, and homeostatic model assessment of insulin resistance values, even after controlling for all covariates. The odds of overweight and insulin resistance are also higher in LGA subjects. After adjusting for all covariates, LGAs conceived through ART had BMI and BMI z-scores that were 0.48 kg/m2 and 0.34 units greater than those of AGAs, respectively. The effect of LGA on BMI was identified as early as infancy and remained consistently significant throughout pre-puberty. Conclusions Compared to AGA, LGA children conceived from ART were associated with increased cardiovascular-metabolic events, which appeared as early as infancy and with no recovery by pre-puberty.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Taishan Scholars Program for Young Experts of Shandong Province

CAMS Innovation Fund for Medical Sciences

Natural Science Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3