Targeting the DNA damage response enhances CD70 CAR-T cell therapy for renal carcinoma by activating the cGAS-STING pathway

Author:

Ji Feng,Zhang Fan,Zhang Miaomiao,Long Kaili,Xia Mingyue,Lu Fei,Li Enjie,Chen Jiannan,Li Jun,Chen Zhengliang,Jing Li,Jia Shaochang,Yang Rong,Hu ZhigangORCID,Guo Zhigang

Abstract

AbstractChimeric antigen receptor T-cell (CAR-T) therapy has shown tremendous success in eradicating hematologic malignancies. However, this success has not yet been extrapolated to solid tumors due to the limited infiltration and persistence of CAR-T cells in the tumor microenvironment (TME). In this study, we screened a novel anti-CD70 scFv and generated CD70 CAR-T cells that showed effective antitumor functions against CD70+ renal carcinoma cells (RCCs) both in vitro and in vivo. We further evaluated the effect and explored the molecular mechanism of a PARP inhibitor (PARPi) in CAR-T cell immunotherapy by administering the PARPi to mouse xenografts model derived from human RCC cells. Treatment with the PARPi promoted CAR-T cell infiltration by stimulating a chemokine milieu that promoted CAR-T cell recruitment and the modulation of immunosuppression in the TME. Moreover, our data demonstrate that PARPi modulates the TME by activating the cGAS-STING pathway, thereby altering the balance of immunostimulatory signaling and enabling low-dose CAR-T cell treatment to induce effective tumor regression. These data demonstrate the application of CD70 CAR-T cell therapeutic strategies for RCC and the cross-talk between targeting DNA damage responses and antitumor CAR-T cell therapy. These findings provide insight into the mechanisms of PARPis in CAR-T cell therapy for RCC and suggest a promising adjuvant therapeutic strategy for CAR-T cell therapy in solid tumors.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Biology,Hematology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3