SIRT1 regulates the phosphorylation and degradation of P27 by deacetylating CDK2 to promote T-cell acute lymphoblastic leukemia progression

Author:

Wang Fangce,Li Zheng,Zhou Jie,Wang Guangming,Zhang Wenjun,Xu Jun,Liang Aibin

Abstract

Abstract Background Despite marked advances in the clinical therapies, clinical outcome of most T-cell acute lymphoblastic leukemia (T-ALL) patients remains poor, due to the high risk of relapse, even after complete remission. Previous studies suggest that the NAD-dependent deacetylase sirtuin 1 (SIRT1) has a dual role in hematologic malignancies, acting as a tumor suppressor or tumor promoter depending on the tumor type. However, little is known about the expression and functions of SIRT1 in T-ALL leukemogenesis. Methods Public RNA-seq data, a Notch1 driven T-ALL mouse model and γ-secretase inhibitor were used to identify SIRT1 expression in T-ALL. We knocked down SIRT1 expression with ShRNAs and assessed the impacts of SIRT1 deficiency on cell proliferation, colony formation, the cell cycle and apoptosis. Transgenic SIRT1 knockout mice were used to determine the function of SIRT1 in vivo. RT-PCR, western blot, co-immunoprecipitation and ubiquitination analyses were used to detect SIRT1, p27 and CDK2 expression and their interactions. Results SIRT1 protein expression was positively correlated with the activation of Notch1. Downregulation of SIRT1 expression suppressed the proliferation and colony formation of T-ALL cell lines, which was reversed by SIRT1 overexpression. SIRT1 silencing prolonged the lifespan of T-ALL model mice. We demonstrated that p27 was involved in the downstream mechanism of cell cycle arrest induced by silencing SIRT1. SIRT1 increased the phosphorylation of p27 on Thr187 by deacetylating CDK2 and enhanced the interaction between p27 and SKP2 leading to the degradation of p27. Conclusion Our findings suggest that SIRT1 is a promising target in T-ALL and offer a mechanistic link between the upregulation of SIRT1 and downregulation of p27.

Funder

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3