Activation of ACLY by SEC63 deploys metabolic reprogramming to facilitate hepatocellular carcinoma metastasis upon endoplasmic reticulum stress

Author:

Hu Chenyu,Xin Zechang,Sun Xiaoyan,Hu Yang,Zhang Chunfeng,Yan Rui,Wang Yuying,Lu Min,Huang Jing,Du Xiaojuan,Xing Baocai,Liu Xiaofeng

Abstract

Abstract Background Tumor cells display augmented capability to maintain endoplasmic reticulum (ER) homeostasis and hijack ER stress pathway for malignant phenotypes under microenvironmental stimuli. Metabolic reprogramming is a well-known hallmark for tumor cells to provide specific adaptive traits to the microenvironmental alterations. However, it’s unknown how tumor cells orchestrate metabolic reprogramming and tumor progression in response to ER stress. Herein, we aimed to explore the pivotal roles of SEC63-mediated metabolic remodeling in hepatocellular carcinoma (HCC) cell metastasis after ER stress. Methods The expression levels of SEC63 in HCC tissues and adjacent non-cancerous tissues were determined by immunohistochemistry and western blot. The regulatory roles of SEC63 in HCC metastasis were investigated both in vitro and in vivo by RNA-sequencing, metabolites detection, immunofluorescence, and transwell migration/invasion analyses. GST pull-down, immunoprecipitation/mass spectrometry and in vivo ubiquitination/phosphorylation assay were conducted to elucidate the underlying molecular mechanisms. Results We identified SEC63 as a new regulator of HCC cell metabolism. Upon ER stress, the phosphorylation of SEC63 at T537 by IRE1α pathway contributed to SEC63 activation. Then, the stability of ACLY was upregulated by SEC63 to increase the supply of acetyl-CoA and lipid biosynthesis, which are beneficial for improving ER capacity. Meanwhile, SEC63 also entered into nucleus for increasing nuclear acetyl-CoA production to upregulate unfolded protein response targets to improve ER homeostasis. Importantly, SEC63 coordinated with ACLY to epigenetically modulate expression of Snail1 in the nucleus. Consequently, SEC63 promoted HCC cell metastasis and these effects were reversed by ACLY inhibition. Clinically, SEC63 expression was significantly upregulated in HCC tissue specimens and was positively correlated with ACLY expression. Importantly, high expression of SEC63 predicted unfavorable prognosis of HCC patients. Conclusions Our findings revealed that SEC63-mediated metabolic reprogramming plays important roles in keeping ER homeostasis upon stimuli in HCC cells. Meanwhile, SEC63 coordinates with ACLY to upregulate the expression of Snail1, which further promotes HCC metastasis. Metastasis is crucial for helping cancer cells seek new settlements upon microenvironmental stimuli. Taken together, our findings highlight a cancer selective adaption to ER stress as well as reveal the potential roles of the IRE1α-SEC63-ACLY axis in HCC treatment.

Funder

Beijing Hospitals Authority Youth Programme

National Natural Science Foundation of China

Science Foundation of Peking University Cancer Hospital

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3