CD276-CAR T cells and Dual-CAR T cells targeting CD276/FGFR4 promote rhabdomyosarcoma clearance in orthotopic mouse models

Author:

Timpanaro Andrea,Piccand Caroline,Dzhumashev Dzhangar,Anton-Joseph Stenija,Robbi Andrea,Moser Janine,Rössler Jochen,Bernasconi MicheleORCID

Abstract

Abstract Background Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in childhood, whose prognosis is still poor especially for metastatic, high-grade, and relapsed RMS. New treatments are urgently needed, especially systemic therapies. Chimeric Antigen Receptor T cells (CAR Ts) are very effective against hematological malignancies, but their efficacy against solid tumors needs to be improved. CD276 (B7-H3) is a target upregulated in RMS and detected at low levels in normal tissues. FGFR4 is a very specific target for RMS. Here, we optimized CAR Ts for these two targets, alone or in combination, and tested their anti-tumor activity in vitro and in vivo. Methods Four different single-domain antibodies were used to select the most specific FGFR4-CAR construct. RMS cell killing and cytokine production by CD276- and FGFR4-CAR Ts expressing CD8α or CD28 HD/TM domains in combination with 4-1BB and/or CD28 co-stimulatory domains were tested in vitro. The most effective CD276- and FGFR4-CAR Ts were used to generate Dual-CAR Ts. Tumor killing was evaluated in vivo in three orthotopic RMS mouse models. Results CD276.V-CAR Ts (276.MG.CD28HD/TM.CD28CSD.3ζ) showed the strongest killing of RMS cells, and the highest release of IFN-γ and Granzyme B in vitro. FGFR4.V-CAR Ts (F8-FR4.CD28HD/TM.CD28CSD.3ζ) showed the most specific killing. CD276-CAR Ts successfully eradicated RD- and Rh4-derived RMS tumors in vivo, achieving complete remission in 3/5 and 5/5 mice, respectively. In CD276low JR-tumors, however, they achieved complete remission in only 1/5 mice. FGFR4 CAR Ts instead delayed Rh4 tumor growth. Dual-CAR Ts promoted Rh4-tumors clearance in 5/5 mice. Conclusions CD276- and CD276/FGFR4-directed CAR Ts showed effective RMS cell killing in vitro and eradication of CD276high RMS tumors in vivo. CD276low tumors escaped the therapy highlighting a correlation between antigen density and effectiveness. FGFR4-CAR Ts showed specific killing in vitro but could only delay RMS growth in vivo. Our results demonstrate that combined expression of CD276-CAR with other CAR does not reduce its benefit. Introducing immunotherapy with CD276-CAR Ts in RMS seems to be feasible and promising, although CAR constructs design and target combinations have to be further improved to eradicate tumors with low target expression.

Funder

Bernese Foundation for Children and Young Adults with Cancer

Foundation for Clinical-Experimental Cancer Research

Childhood Cancer Switzerland

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Reference93 articles.

1. Skapek SX, Ferrari A, Gupta AA, Lupo PJ, Butler E, Shipley J, et al. Rhabdomyosarcoma. Nat Rev Dis Primers. 2019;5(1):1.

2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

3. Fletcher CDM, Baldini EH, Blay JY, Gronchi A, Lazar AJ, Messiou C, et al. WHO classification of tumours. In: Board TWCoTE, editor., et al., Soft tissue and bone tumours. Lyon: IARC Press; 2020. p. 201–15.

4. Parham DM, Barr FG. Classification of rhabdomyosarcoma and its molecular basis. Adv Anat Pathol. 2013;20(6):387–97.

5. Davis RJ, D’Cruz CM, Lovell MA, Biegel JA, Barr FG. Fusion of PAX7 to FKHR by the variant t (1; 13)(p36; q14) translocation in alveolar rhabdomyosarcoma. Can Res. 1994;54(11):2869–72.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3