Integrated multi-dimensional analysis highlights DHCR7 mutations involving in cholesterol biosynthesis and contributing therapy of gastric cancer

Author:

Chen Yuqi,Yan Wenying,Yang Kexi,Qian Yiting,Chen Yanjun,Wang Ruoqin,Zhu Jinghan,He Yuxin,Wu Hongya,Zhang Guangbo,Shi Tongguo,Chen Weichang

Abstract

Abstract Background Genetic background plays an important role in the occurrence and development of gastric cancer (GC). With the application of genome-wide association study (GWAS), an increasing number of tumor susceptibility genes in gastric cancer have been discovered. While little of them can be further applicated in clinical diagnosis and treatment due to the lack of in-depth analysis. Methods A GWAS of peripheral blood leukocytes from GC patients was performed to identify and obtain genetic background data. In combination with a clinical investigation, key SNP mutations and mutated genes were screened. Via in vitro and in vivo experiments, the function of the mutated gene was verified in GC. Via a combination of molecular function studies and amino acid network analysis, co-mutations were discovered and further identified as potential therapeutic targets. Results At the genetic level, the G allele of rs104886038 in DHCR7 was a protective factor identified by the GWAS. Clinical investigation showed that patients with the rs104886038 A/G genotype, age ≥ 60, smoking ≥ 10 cigarettes/day, heavy drinking and H. pylori infection were independent risk factors for GC, with odds ratios of 12.33 (95% CI, 2.10 ~ 72.54), 20.42 (95% CI, 2.46 ~ 169.83), and 11.39 (95% CI, 1.82 ~ 71.21), respectively. Then molecular function studies indicated that DHCR7 regulated cell proliferation, migration, and invasion as well as apoptosis resistance via cellular cholesterol biosynthesis pathway. Further amino acid network analysis based on the predicted structure of DHCR7 and experimental verification indicated that rs104886035 and rs104886038 co-mutation reduced the stability of DHCR7 and induced its degradation. DHCR7 mutation suppressed the malignant behaviour of GC cells and induced apoptosis via inhibition on cell cholesterol biosynthesis. Conclusion In this work, we provided a comprehensive multi-dimensional analysis strategy which can be applied to in-depth exploration of GWAS data. DHCR7 and its mutation sites identified by this strategy are potential theratic targets of GC via inhibition of cholesterol biosynthesis.

Funder

Jiangsu Provincial Key Research and Development Program

The Life and Health Special Funds of the Jiangsu Province’s Science and Technology Bureau

Health Personnel Training Project of Suzhou

The National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3