Aerobic glycolysis enhances HBx-initiated hepatocellular carcinogenesis via NF-κBp65/HK2 signalling

Author:

Chen Lingjun,Lin Xianyi,Lei Yiming,Xu Xuan,Zhou Qi,Chen Yan,Liu Huiling,Jiang Jie,Yang Yidong,Zheng Fengping,Wu Bin

Abstract

Abstract Background Aerobic glycolysis has been recognized as one of the growth-promoting metabolic alterations of cancer cells. Emerging evidence indicates that nuclear factor κB (NF-κB) plays significant roles in metabolic adaptation in normal cells and cancer cells. However, whether and how NF-κB regulates metabolic reprogramming in hepatocellular carcinoma (HCC), specifically hepatitis B virus X protein (HBx)-initiated HCC, has not been determined. Methods A dataset of the HCC cohort from the TCGA database was used to analyse the expression of NF-κB family members. Expression of NF-κBp65 and phosphorylation of NF-κBp65 (p-p65) were detected in liver tissues from HBV-related HCC patients and normal controls. A newly established HBx+/+/NF-κBp65f/f and HBx+/+/NF-κBp65Δhepa spontaneous HCC mouse model was used to investigate the effects of NF-κBp65 on HBx-initiated hepatocarcinogenesis. Whether and how NF-κBp65 is involved in aerobic glycolysis induced by HBx in hepatocellular carcinogenesis were analysed in vitro and in vivo. Results NF-κBp65 was upregulated in HBV-related HCC, and HBx induced NF-κBp65 upregulation and phosphorylation in vivo and in vitro. Hepatocyte-specific NF-κBp65 deficiency remarkably decreased HBx-initiated spontaneous HCC incidence in HBx-TG mice. Mechanistically, HBx induced aerobic glycolysis by activating NF-κBp65/hexokinase 2 (HK2) signalling in spontaneous hepatocarcinogenesis, and overproduced lactate significantly promoted HCC cell pernicious proliferation via the PI3K (phosphatidylinositide 3-kinase)/Akt pathway in hepatocarcinogenesis. Conclusion The data elucidate that NF-κBp65 plays a pivotal role in HBx-initiated spontaneous HCC, which depends on hyperactive NF-κBp65/HK2-mediated aerobic glycolysis to activate PI3K/Akt signalling. Thus, phosphorylation of NF-κBp65 will be a potential therapeutic target for HBV-related HCC.

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3