Long non-coding RNA XIST regulates gastric cancer progression by acting as a molecular sponge of miR-101 to modulate EZH2 expression

Author:

Chen Dong-liang,Ju Huai-qiang,Lu Yun-xin,Chen Le-zong,Zeng Zhao-lei,Zhang Dong-sheng,Luo Hui-yan,Wang Feng,Qiu Miao-zhen,Wang De-shen,Xu Da-zhi,Zhou Zhi-wei,Pelicano Helene,Huang Peng,Xie Dan,Wang Feng-hua,Li Yu-hong,Xu Rui-hua

Abstract

Abstract Background Long non-coding RNAs (lncRNAs) have emerged as critical regulators of tumor progression. However, the role and molecular mechanism of lncRNA XIST in gastric cancer is still unknown. Methods Real-time PCR analysis was performed to measure the expression levels of lncRNA XIST in gastric cancer tissues and cell lines, the correlation between lncRNA XIST expression and clinicopathological characteristics and prognosis was analyzed in gastric cancer patients. The biological function of lncRNA XIST on gastric cancer cells were determined both in vitro and in vivo. The regulating relationship between lncRNA XIST and miR-101 was investigated in gastric cancer cells. Results lncRNA XIST was significantly up-regulated in gastric cancer tissues and cell lines. Overexpression of lncRNA XIST was markedly associated with larger tumor size, lymph node invasion, distant metastasis and TNM stage in gastric cancer patients. Functionally, knockdown of lncRNA XIST exerted tumor-suppressive effects by inhibiting cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo. Furthermore, an inverse relationship between lncRNA XIST and miR-101 was found. Polycomb group protein enhancer of zeste homolog 2 (EZH2), a direct target of miR-101, could mediated the biological effects that lncRNA XIST exerted. Conclusions lncRNA XIST is up-regulated and is associated with aggressive tumor phenotypes and patient survival in gastric cancer, and the newly identified lncRNA XIST/miR-101/EZH2 axis could be a potential biomarkers or therapeutic targets for gastric cancer patients.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3